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Motivation

• As ML is used for real processes, the testing set is effectively
infinite, and there are needs to evaluate how certain are the
predictions in completely unseen samples, as this additional
information can be used to assert if the predictions are useful.

• Autonomous Driving: The decision making process while driving
needs to know if the predictions from a perception model are
reliable, and to know when the model does not know.

• Medical Applications: Low confidence predictions might indicate
that additional tests might be required, instead of taking a decision
over faulty data.
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Motivation

• We need ML models that can answer the following questions:

Do I know that I do not know?
Can I refuse to provide an answer?

• This is related to out of distribution detection, a model can provide
information to say that the input is dissimilar to the training set, or
the task is very different, and refuse to answer.

• Classic example is to train a cat/dog model, and test with a bird
image. The answer will always be wrong for a typical model.
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Why Uncertainty?

Figure extracted from "Leveraging uncertainty information from deep neural networks for disease

detection" by Leibig et al. 2017.
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What is Uncertainty in Machine Learning?

Training Set (Dogs vs Cats)

Human

Dog and Cat

?

? ?

Trained Model

What output probabilities
make sense?
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What is Uncertainty in Machine Learning?
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FER+ fataset, with crowd sourced labels for emotion recognition, over
classes Neutral, Happinesss, Surprise, Sadness, Anger, Disgust, Fear,

and Contempt.
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What is Uncertainty in ML?

• Real-world datasets are typically unbalanced, so confidences on
each class should be different, reflecting the training data and model
inferences.

• Real-world datasets might contain noise, like imprecise labels,
ambiguous measurements, or sensor noise. A model should be
aware of this.

• Most neural networks are overconfident, meaning that softmax
confidences do not have a good probabilistic interpretation and
could be misleading.

Uncertainty Quantification in Machine Learning - Dr. Valdenegro 10/131



What do Classical Models Lack?

• Most machine learning models do not explicitly model uncertainty at
their outputs.

• They produce point-wise predictions. A model with uncertainty
outputs a distribution.

• A distribution can usually include more information than a single
point-wise prediction, for example, mean and variance for a
regression output instead of just a point prediction.

• Neural networks are often overconfident, producing wrong
predictions with high confidence.
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What do Classical Models Lack?
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Practical Applications of Uncertainty

• Reliable confidence estimates can be used to detect misclassified
examples or when the model is extrapolating.

• A model can reject to produce an output if the uncertainty is too
high, for example, to require human processing instead of
automated. This is called out of distribution detection.

• The confidence or uncertainty of a prediction tells the human how
much it should really trust the prediction.

• Additional decision making can be made with a realistic confidence
score, which is very important for medical and human-interaction
applications.
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Types of Uncertainty

Aleatoric Uncertainty

Uncertainty that is inherent to the data, for example, sensor noise,
stochastic processes.
Cannot be reduced by adding more information.

Epistemic Uncertainty

Uncertainty produced by the model, for example, model misspecification,
class imbalance, lack of training data.
Can be reduced by adding more information to the training process.
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Aleatoric Uncertainty

The simplest example of AU is measurements corrupted by additive
noise, like f(x) = x3 + ε Where ε ∼ N (0, σ2) and x3 would be the true
function.
If σ2 is constant, this is called homoscedatic noise, if σ2 is a function of
the input or variable, then it is called heteroscedatic noise.
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Epistemic Uncertainty
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Data
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Uncertainty Representations

• Before starting with techniques, we need to discuss how uncertainty
information is represented.

• In general, this is not so trivial as there are multiple representations,
and it depends on the kind of task.

• The most generic representation is to use a probability distribution
on the output. This distribution indirectly encodes uncertainty.
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Uncertainty Representation - Regression

Assuming that the output is represented by f(x), then there are two
principal ways to represent uncertainty.

Confidence Intervals

The output is within some defined interval [a, b]:

f(x) ∈ [a, b]

Usually some methods give a probability that the output belongs to the
interval.
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Uncertainty Representation - Regression

Assuming that the output is represented by f(x), then there are two
principal ways to represent uncertainty.

Mean and Variance

Uncertainty is represented as the variation of the output from the mean
(f(x)):

f(x)± σ

A equivalent interval would be f(x) ∈ [f(x)− σ, f(x) + σ]
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Uncertainty Representation - Classification

• For classification, representing
uncertainty is a bit more hard.

• The only robust representation
is to use a discrete probability
distribution.

• The easiest way to implement
it is to use a softmax activation
(for multi-class) or a sigmoid
activation (for binary
classification).
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Overconfidence and Calibration

• Many models produce
probabilities or confidence
intervals that are not good,
mostly are overconfident.

• Probabilities or confidence
intervals must have a specific
meaning, and this can be
measured by calibration.
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Entropy

Entropy is a measurement of the "information content" in a probability
distribution. It is defined as:

H = −
∑
x

P (x) logP (x) =
∑
x

P (x) log
1

P (x)

The entropy is important as it is directly related to uncertainty. The units
of entropy are called bits if one uses the base-two logarithm.
The uniform distribution is the one that maximizes entropy, as its results
are harder to predict. For a fixed mean and variance, the Gaussian
distribution is the one that maximizes the entropy.
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Entropy Examples

• For a event that always happens, its entropy is zero bits.

• A fair coin flip has 1.0 bits of entropy.

• A uniform distribution has the maximum entropy possible across
distributions.

• In general, the more information content, the higher the entropy.
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Challenges of DL in Robotics [Sünderhauf
et al. 2018]

• Machine/Deep Learning and Computer Vision by itself is quite
different from Robotics. The main difference is that a robot has a
"body".

• A good description paper about this topic is "The Limits and
Potentials of Deep Learning for Robotics" by Sünderhauf et al. 2018.

• Embodiment is the main difference between Robot
Learning/Perception and their more theoretical fields of
Machine/Deep Learning and Computer Vision.
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Challenges of DL in Robotics [Sünderhauf
et al. 2018]
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Challenges of DL in Robotics - Learning
[Sünderhauf et al. 2018]

Level Name Description
5 Active Learning The system is able to select the most informative samples

for incremental learning on its own in a data-efficient way. It
can ask the user to provide labels.

4 Class-Incremental
Learning

The system can learn new classes, preferably using low-
shot or one-shot learning techniques, without catastrophic
forgetting. The system requires the user to provide these
new training samples along with correct class labels.

3 Incremental Learning The system can learn off new instances of known classes
to address domain adaptation or label shift. It requires the
user to select these new training samples.

2 Identify Unknowns In an open-set scenario, the robot can reliably identify in-
stances of unknown classes and is not fooled by out-of dis-
tribution data.

1 Uncertainty
Estimation

The system can correctly estimate its uncertainty and re-
turns calibrated confidence scores that can be used as
probabilities in a Bayesian data fusion framework. Current
work on Bayesian Deep Learning falls into this category.

0 Closed-Set Assump-
tions

The system can detect and classify objects of classes
known during training. It provides uncalibrated confidence
scores.
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Challenges and Applications

Medical Systems and Decision Making

Practically all medical applications require correct (epistemic) uncertainty
estimates to be used with humans/animals, receive regulatory approval,
and be useful for practitioning medical doctors to make decisions.

Robotics

Generally in Robotics, useful uncertainties are not modeled, for example
uncertainty in dynamical systems (parameters), perception (object
detection), or estimate when robot capabilities are being extrapolated.
The best example is autonomous driving.
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Challenges and Applications

Reinforcement Learning

In the same way, it is very important to have RL-learned policies that can
estimate their own epistemic uncertainty, and not take an action when
the environment is too different from the training one.

• RL in robots or real mechanisms, with safety constraints (Safe RL).

• RL in non-stationary environments (for example, dynamic or
unpredictable obstacles).

• Reduce the sample complexity required for training through Active
Learning and Exploration.
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Challenges and Applications

Autonomous Driving

Autonomous Driving is a very important application field, as the whole
reason for AD to be desirable, is that it can provide safer driving than
humans. But this is not automatic, safety has to be engineered and safe
methods have to be developed and used.

• AD usually fails with variations of the test environment, like different
weather, physical location of roads, and environmental conditions
like snow and rain.

• A car using AD has to detect unusual and strange situations and
alert the driver, and has to do this with nearly 100% precision.

• In many AD systems, usual situations are labeled by humans, which
does not scale (And it is strange to claim super-human driving from
human samples).

Uncertainty Quantification in Machine Learning - Dr. Valdenegro 30/131



Objective - Safe and Trustable Robots
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Objective - Safe and Trustable Robots

Examples

• Multiple incidents of experimental Autonomous Vehicles hitting
human pedestrians and producing accidents, due to conditions not
considered in development/training (similar to Kidnapped Robot
Problem).

• Possible issues with Robots at care homes for the elderly.
Algorithms should be tuned for maximum safety.

• Well known examples of face recognition being biased against some
skin colors, OOD detection can help in preventing or alleviate these.

• AI/Robotics should be done for the social good.
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Bayesian View of Uncertainty

Bayesian statistics has a particular view of uncertainty. Typically when
learning a model, we wish to learn the probability distribution P (y | x),
that is, the probability of some output given the input. But this does not
consider the model parameters w, which in the end indirectly encode
uncertainty.
Then we wish to learn P (y | x, w) which directly considers the model
parameters. As model parameters are learned from data, then we wish
to learn P (w |D):

P (w |D) =
P (D |w)P (w)

P (D)

Here D = {xi, yi} is a labeled training set. Bayes Rule’ allows us to
decompose the probability of the weights given the data (which is
unknown) into probability of the data given the weights (computed by the
model).
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Bayesian View of Uncertainty

• From the Bayesian POV, a model is defined by both the structure
(the actual model equations) and the model’s parameters.

• This means that for a Bayesian model, the model parameters
encode the model uncertainty about each prediction. There are
equations to compute the output probability distribution from the
model and its inputs.

• Intuitively, this can be seen as a simple question. If we have several
models trained on the same data, the model’s parameters won’t be
the same. Some parameters might be very close, some will be
equal, and some will be radically different.

• These variations on model parameters can be encoded as a
probability distribution. Bayesian statistics can be used to estimate
these distributions P (w |D)
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Bayesian View of Uncertainty (on MNIST
with SGHMC)
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Bayesian Learning

Maximum Likelihood Estimation Maximize the logarithm of the
probability of the data given the model parameters.

wMLE = argmaxw logP (D |w)

= argmaxw
∑
i

P (yi |xi, w)

Maximum A Posteriori MLE formulation plus a regularization term
P (w), which corresponds to a prior on the model
parameters.

wMAP = argmaxw logP (w |D)

= argmaxw [P (D |w) + P (w)]

Both of these formulations only learn what is called point-wise estimates
of the parameters, instead of a full probability distribution, which in
general it is very hard to estimate.
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Bayesian Prediction

If the distribution over weights is obtained, then output distributions can
be computed with the bayesian predictive posterior distribution:

P (y |x) =

∫
w
P (y |w, x)P (w |x) dw

This equation is obtained by marginalizing over all possible model
parameters w. This equation basically computes predictions y with
different model parameters w and weights them by the probability of
those parameters given the input x. This can also be considered as a
form of Bayesian Model Averaging.
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Bayesian Prediction Issues

• The biggest issue with Bayesian learning methods is how to encode
or represent the posterior probability distributions over the weights.
Since typical usable models have millions of parameters, the
distribution is very high-dimensional.

• There is the issue of computational complexity. Integrating over
millions of parameters and performing multiple predictions for each
of these parameters is computationally infeasible.

• In general there are no closed form representations for posterior
distribution over weights, and consequently there are also no closed
form computations of the Bayesian predictive posterior distribution.
The only alternative is to represent the distribution with samples
(histograms), and to use Monte Carlo methods to sample from the
posterior distribution.
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Uncertainty Propagation

The most simple method is, given input values with uncertainty x± σ2,
the output including uncertainty can be propagated through a non-linear
function. This is done with a linear approximation from a taylor series:

f(x± σ2) = f(x)± Jσ2JT

Where J is the Jacobian matrix of f(x) evaluated on x.

Jij =
∂fi
∂xj

Note that this is just an approximation and it works considerably bad for
very non-linear functions. It works better if the step size (the input
uncertainty) is small. Better results can be obtained by using higher
order taylor approximations.
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Uncertainty Propagation

• Note that this is only an approximation, and usually one does not
know how much "off" is the approximation from the uncertainty
value.

• This method only considers aleatoric uncertainty, and does not
compute the uncertainty of the model itself (the epistemic one).

• This makes this method only usable in some specific cases, for
example if inputs are noisy and one wants to evaluate if predictions
are also noisy.

Uncertainty Quantification in Machine Learning - Dr. Valdenegro 43/131



Uncertainty in Random Forests and
Ensembles

• Random Forests and Ensembles methods,also have an a
uncertainty view related to them.

• Any ensemble method trained on the same dataset can produce
direct uncertainty estimations by estimating the variance of the
outputs across the ensemble. If each member of the ensemble
learns slightly different parameters, then that uncertainty will
propagate from the model into the output.

• The quality of the uncertainty estimates depends on: correlations in
the training set for each member, number of member in the
ensemble, and noise during learning.

• Note that usually to get valuable uncertainty estimates, a large
number (over 10-100) ensemble members are needed.
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Uncertainty in Random Forests and
Ensembles

Regression Uncertainty

Compute the sample mean and variance from the predictions:

µ(x) = N−1
∑
i

fi(x) σ2(x) = (N − 1)−1
∑
i

(fi(x)− µ(x))2

Classification Uncertainty

Estimate the distribution over the classes with a histogram. If a classifier
with a softmax output is used, then the softmax probabilities can be
averaged together.
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Uncertainty in Classification with
Histograms
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Learning Uncertainty

• Another common idea is to train a ML estimator with two outputs,
one for the prediction, and another for the uncertainty of that
prediction.

• For a regression problem, one can use a MLE loss to learn the
mean ŷ and variance σ2:

LMLE = 0.5
∑
i

[
lnσ2i +

(yi − ŷi)2

σ2i

]
• This loss only requires labels for the target outputs (yi), and no

labels for uncertainty are needed. In theory the uncertainty σ2

balances out between the divisor and logarithm terms.

• No equivalent loss for classification. Sampling through softmax
function can be used to regress logits.

• This method generally learns aleatoric uncertainty.
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Ensembles

• Recent paper: "Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles" by Lakshminarayanan et al.
2017.

• Its a method that uses neural networks and combines three
methods we have previously seen.

• Its basically a neural network with two output "heads", one for the
prediction and another for the uncertainty.
• The model is trained with:

1. Adversarial examples as a kind of data augmentation.
2. Dropout at both training and inference time.
3. An MLE loss is used for supervision of the uncertainty output.

• Multiple models are trained on the same dataset, and an ensemble
is built.
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Ensembles

• Ensembles have also powerful uncertainty estimation properties.

• Ensembling consists of training M instances of the same model, but
with different randomly drawn initial weights, and then combining
their predictions.

• For regression, each ensemble member has two output heads, one
for the mean µi(x) and one for the variance σ2i (x), and a special
loss is used for training:

− log p(yn|xn) =
log σ2i (xn)

2
+

(µi(xn)− yn)2

2σ2i (xn)
+ C

• This loss is a negative log-likelihood with heteroscedastic variance,
the model predicts a variance for each data point.
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Ensembles - Combination

Where pi is the output of the i-th member in the ensemble:

Classification

Ensemble output is average of the probabilities:

pe(y |x) = M−1
∑
i

pi(y |x)
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Ensembles - Combination

Where pi is the output of the i-th member in the ensemble:

Regression

Ensemble output is a Gaussian mixture model:

pe(y |x) ∼ N (µ∗(x), σ2∗(x))

µ∗(x) = M−1
∑
i

µi(x)

σ2∗(x) = M−1
∑
i

(σ2i (x) + µ2i (x))− µ2∗(x)
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Ensembles - Toy Regression
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Ensembles - Classification
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Ensembles - Unseen Examples
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Ensembles - Sinusoid Regression
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Sampling Methods for Uncertainty
Quantification

• These are methods that approximate posterior probability
distributions by sampling or by representing these distributions with
histograms of samples.

• In general they are expensive, as they have to repeat a number of
computations for each sample, but they provide very good estimates
of uncertainty.

• Also generally a large number of samples (100-1000) are required
to well approximate these posterior distributions, which also adds
into the computation time.
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Monte Carlo Dropout

• Its a interpretation of applying Dropout in a neural network, but at
inference time.

• Yarin Gal made theoretical proofs that showed that using Dropout at
inference time is approximately equivalent to sampling the predictive
posterior distribution, under some assumptions.

• This has connections to Bayesian model averaging, as each forward
pass using Dropout samples a different model, which may make
different predictions. The mean and variance can be estimated from
multiple samples as:

µ(x) = N−1
∑
i

fi(x) σ2(x) = (N − 1)−1
∑
i

(fi(x)− µ(x))2
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Monte Carlo Dropout

• Dropout is a well known technique for regularization of Neural
Networks.

• During training, a mask mi ∼ Bernoulli(p) is drawn and multiplied
with the input activations, effectively making some of them zero.

• Dropout can also be enabled at inference time, where it has been
proven that it works as an approximation of the predictive posterior
distribution.
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Monte Carlo DropConnect

• DropConnect is a variation of Dropout, where instead of applying a
mask to the activations of a layer, it is applied to the weights of a
layer.

• It has been proven to also produce an approximation of the
predictive posterior distribution. It requires the implementation of
new layers that use DropConnect internally.

• In some cases it outperforms MC Dropout in both task and
uncertainty performance, but not always.
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What about Monte Carlo?

• Enabling Dropout or DropConnect at inference transforms the neural
network into a stochastic model.

• This means each forward pass produces a different result, a sample
from the predictive posterior distribution.

• The model with uncertainty can be evaluated by combining the
predictions from M forward passes.

• This is the Monte Carlo version of the predictive posterior
distribution:

p(y |x) ∼M−1
M∑
i

p(y |x, θi) where θi ∼ Θ
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Monte Carlo Dropout

• For classification, histograms or softmax probability averages can be
used.

• It requires no modification to the network, other than it must be
trained using Dropout.

• Very well received as its simple and theoretically grounded.

• But also do not forget that it is only an approximation. It assumes
Gaussian errors, which means it has difficulty predicting
distributions with more than one peak.
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Monte Carlo Dropout - MNIST Example
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Monte Carlo Dropout - Regression on
Mauna Loa CO2
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Monte Carlo Dropout - Semantic
Segmentation
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Monte Carlo Dropout - Depth Regression
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MC-DropConnect - Sinusoid Regression
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Predictive Mean
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Three Sigma Confidence Interval
Two Sigma Confidence Interval
One Sigma Confidence Interval
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Weight Uncertainty in Neural Networks

• This method approximates the distribution of each weight with a
Gaussian one, using a variational approximation.

• The weight distribution is learned automatically from the data,
without additional supervision.
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Weight Uncertainty in Neural Networks

• Each weight in the model is no longer represented as a scalar
(floating point number), but as a single Gaussian distribution with
parameters N (µ, ρ). This is called a variational approximation.

• The parameters of the variational distribution (µ, ρ) are updated
using gradient descent.

• But since they weights are now distributions and not actual
numbers, the gradient is approximated with a Monte Carlo gradient
that is stochastic.

• Prediction outputs can be computed using the Bayesian predictive
posterior distribution, but the authors don’t specify exactly how it is
done. I suspect that they just sampled weights from the variational
distributions and performed one forward pass per sample.
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Weight Uncertainty in Neural Networks

1. Sample ε ∼ N(0, I)

2. Compute w = µ+ log(1 + eρ) ◦ ε
3. Let θ = (µ, ρ) and f(w, θ) = log q(w | θ)− logP (w)P (D |w) where
q(w | θ) is the parametrized variational distribution on the weights.

4. Compute gradients with respect to mean µ and parametrized
standard deviation ρ:

∆µ =
∂f(w, θ)

∂w
+
∂f(w, θ)

∂µ
(1)

∆ρ =
∂f(w, θ)

∂w

ε

1 + e−ρ
+
∂f(w, θ)

∂ρ
(2)

5. Update variational distribution parameters:

µn+1 = µn − α∆µ (3)

ρn+1 = ρn − α∆ρ (4)
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Weight Uncertainty in Neural Networks:
Regression
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Gaussian Processes

• A Gaussian process is the generalization of a Gaussian distribution
to the function space.

• In other words, it is a stochastic process where the variables form a
Multivariate Gaussian Distribution.

• They are considered a non-parametric method, meaning that
training a GP actually stored the whole training data, instead of
estimating parameters of the model. There is also no closed form
equation for the model, it is completely data-driven.

• In order to make predictions, the whole training set is required,
making practical use of this method difficult, specially for large
datasets.

• For each prediction point/vector, a full distribution is output, which
encodes uncertainty of the model.
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Gaussian Processes

A Gaussian process is fully defined by its mean and covariance
functions, given a real process f(x):

m(x) = E[f(x)] (5)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (6)

The covariance function is the most important part of the GP, and it can
be considered as a "hyper-parameter" function. It defines how the
similarity between data points is computed. Given a dataset xi, the
Covariance matrix is:

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)
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Gaussian Process Prediction: Noise Free

In the case of a noise-free model, predictions can be done by sampling
from the following Multivariate Gaussian distribution. Assuming that the
training inputs are x and targets are y.

P (y∗ |x) ∼ N (K∗K
−1y,K∗∗ −K∗K−1KT

∗ )

Where we recognize K∗K−1y is the mean, and K∗∗ −K∗K−1KT
∗ is the

covariance matrix of the Gaussian distribution. Terms involving a star (*)
are evaluated on the "test set" as follows:

K∗ =
(
k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)

)
K∗∗ = K(x∗, x∗)
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Gaussian Process Prediction: Noisy
Observations

In the case of noisy observations y = f(x) + ε, assuming independent
and identically distributed noise with ε ∼ N (0, σ2). The predictive
Gaussian Process N (f̄∗,COV(f∗)) then has mean f̄∗ and covariance
COV(f∗) given by:

f̄∗ =K(X∗, X)
[
K(X,X) + σ2I

]−1
y

COV(f∗) =K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2I

]−1
K(X,X∗)

In the case there is a single test point it can be simplified to:

f̄∗ =kT∗ (K(X,X) + σ2I)−1y

COV(f∗) =K(x∗, x∗)− kT∗ (K(X,X) + σ2I)−1k∗

Where k∗ =
(
k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)

)
.
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Gaussian Process Prediction: Linear
Interpretation

The previous equations for the predictive mean can be seen as a linear
combination of the kernel/covariance functions:

f̄(x∗) =

n∑
i=0

αik(xi, x∗)

Where the vector α = (K(X,X) + σ2I)−1y. Also note that the mean of
the Gaussian Process depends on the training targets y, but the
covariance function does not depend on the target values. Assuming that
a process has zero mean (for example, normalizing by substracting the
mean), then a Gaussian Process can be completely defined by its
covariance COV(f∗).
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Samples from a Gaussian Process
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Three samples from the GP posterior

Ground truth
Sample 1
Sample 2
Sample 3
Mean
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Kernel/Covariance Functions for Gaussian
Processes

A kernel or covariance function is any function that produces a valid
covariance matrix (that is, positive semi-definite). Some examples of
Covariance functions are:

• Linear: KL(x, x′) = xTx′

• Squared Exponential: KSE(x, x′) = e−
|x−x′|2

2σ2

• Ornstein-Uhlenbec: KOU (x, x′) = e−
|x−x′|
σ

• Periodic: KP (x, x′) = e−
2 sin2(0.5|x−x′|)

σ2

• Rational Quadratic: KRQ(x, x′) = (1 + |x− x′|2)−α
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Effect of Different Kernel/Covariance
Functions
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Classification with Gaussian Processes

• So far we have only mentioned regression with a GP.

• Classification can be easily performed by regressing the logits that
can be given to a sigmoid (for binary classification) or softmax
function (for multi-class classification).

• But then there are no observations for the logits, only for the class
labels. The exact values of the logits are not important, just that they
produce the right class labels and uncertainty.

• We won’t cover now how this is exactly done, as it is a bit
complicated and mathematical.
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Learning Performance

The first thing is to define how to measure the performance of a learning
model.

Losses

Objective function that guides learning during the optimization process. It
defines the task to be learned and the quality of solutions. Usually it has
to be differentiable.

Metrics

Measurements of quality that let the ML developer evaluate the learning
process’ success. Usually non-differentiable. Losses can be used as
Metrics as well.
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Probabilistic Classifiers

Most classifiers output a probability vector p of length C. The class
integer class index c can be recovered by:

c = argmaxi p (7)

Note that for C classes, their indices go from 0 to C − 1. For binary
classification, only a single probability is required:

f(x) = P (y = 1) = 1− P (y = 0) (8)

In this case, the classifier outputs the probability of class 1 (usually the
positive class), while the probability for class 0 (the negative class) can
be recovered by subtracting with one.
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Loss Functions - Classification

Categorical Cross-Entropy

For this loss, labels yc should be one-hot encoded. Used for multi-class
classification problems, where the model predictions are ŷic are class
probabilities that sum to 1.

L(y, ŷ) = −
∑
i

∑
c

yci log(ŷci )

Binary Cross-Entropy

Used for binary classification problems with labels yi ∈ {0, 1}

L(y, ŷ) = −
∑
i

yi log(ŷi) + (1− yi) log(1− ŷi)
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Loss Functions - Classification

Binary Cross-Entropy
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Loss Functions - Negative Log-Likelihood

Log-likelihoods are a family of losses or objective functions. For
regression with uncertainty, the following loss is commonly used.

− log p(yn|xn) =
log σ2i (xn)

2
+

(µi(xn)− yn)2

2σ2i (xn)
+ C (9)

Here the model outputs two variables. A mean µ(x) and variance σ2(x),
and these are weighted. If the model is uncertain (large σ2) then the
squared error is ignored but the logarithm of variance counteracts this
effect, and if the model is certain (small σ2), then the opposite effect
happens.

This loss assumes that the model outputs the parameters of a Gaussian
distribution.
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Loss Functions - Others

Kullback-Leibler Divergence

Distance measure between probability distributions p and q. The
Cross-Entropy is a simplified version of this loss (with some
assumptions).

L(p, q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)
dx

)
L(y, ŷ) =

∑
i

yi log

(
yi
ŷi

)
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Loss Functions with Uncertainty

Some special loss functions that I mentioned here do consider
uncertainty.

• Cross Entropy. Special case of NLL for classification, also
considers the probabilities/confidences of the correct class.

• Gaussian NLL. Special case of NLL for regression with Gaussian
distributed output. Models uncertainty through the variance output.

• KL Divergence. General case of many losses, measures distance
between probability distributions, which implicitly models uncertainty.
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Calibration

• We talked about a concept that indicates how much we can trust the
confidence of a model.

• This can be formalized by comparing task performance (such as
accuracy) as the confidence of predictions change.

• For example, if a prediction is made with 10% confidence, then we
expect that such predictions will be correct 10% of the time.

• And correspondingly, if a prediction is made wit 90% confidence,
then only 10% of such predictions will be incorrect.
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Calibration - Reliability Plots

• Calibration can be observed by making a Reliability plot.

• We take the predictions of a model over a dataset, divide the
predictions by confidence values conf(Bi) into bins Bi, for each bin
the accuracy acc(Bi) is computed, and then the values
(conf(Bi), acc(Bi)) are plotted.

• Regions where conf(Bi) < acc(Bi) indicate that the model is
underconfident, while regions conf(Bi) > acc(Bi) indicate
overconfidence.

• The line conf(Bi) = acc(Bi) indicates perfect calibration.
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Calibration - Reliability Plots
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Calibration - Metrics

Calibration Error

This is the standard metric to measure miscalibration. It is affected by
variations in the number of samples in each bin.

CE =
∑
i

|acc(Bi)− conf(Bi)|
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Calibration - Metrics

Expected Calibration Error

In order to compensate for the varying number of elements in each bin
Bi, ECE weights the error produced by each bin by the proportion of
samples in that bin with respect of the total of samples.

ECE =
∑
i

N−1|Bi| |acc(Bi)− conf(Bi)|

This produces a metric that is much more stable and less prone to
outliers. This is usually the metric that is commonly reported in scientific
publications.
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Calibration - Metrics

Maximum Calibration Error

For risk averse applications, the MCE computes the maximum level of
miscalibration, so appropriate risk can be estimated and addressed by
the application designed. Variations in miscalibration in each bin can
hide in the overall mean or expectation.

MCE = max
i
|acc(Bi)− conf(Bi)|

For example, in Autonomous Driving, the maximum miscalibration should
be close to zero.
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Calibration - Reliability Plots with
MC-Dropout on MNIST
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Figure 1: Classical NN, Calibration error is 0.18
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Figure 2: Bayesian NN with MC-Dropout,
Calibration error is 0.11
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Out of Distribution Detection

• It is the task of detecting when the input to the model is outside of
the distribution of the training set used to train the model.

• This corresponds to the model rejecting to provide an output if its
uncertain about it.

• Doing this is simple, reject to consider a model’s output if the
uncertainty is too large. The trick is to select an appropriate
threshold.

• For regression, the standard deviation of the output can be used.
For classification, entropy is preferred:

H(p(x)) = −
∑
i

p(x)i log p(x)i
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Out of Distribution Detection - MNIST vs
Fashion MNIST
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Out of Distribution Detection - MNIST vs
Fashion MNIST

MNIST
1.411963 1.415481 1.420386 1.435212 1.446755 1.454201 1.469984 1.496932 1.577835 1.584055

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Fashion MNIST
2.004164 2.005848 2.009625 2.009688 2.015045 2.015873 2.036938 2.051112 2.052563 2.154850

0.000000 0.000001 0.000001 0.000001 0.000002 0.000002 0.000002 0.000003 0.000004 0.000005
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Out of Distribution Detection - Sinusoid
Regression with Ensembles
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Deep Ensemble Regression of 2sin(0.75x) +  noise

Predictive Mean
Ground truth 2sin(0.75x)
Three Sigma Confidence Interval
Two Sigma Confidence Interval
One Sigma Confidence Interval

In this example, the training set is x ∈ [−8, 8], it can be visually seen that
outside this range the standard deviation of the output (uncertainty)
increases considerably, and increases as with the distance to that range.
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Out of Distribution Detection - Pitfalls

• It is not easy to completely separate ID and OOD examples, as
some ID examples have still high uncertainty, and sometimes OOD
examples have low uncertainty. This is due to variability in classes.

• Choosing a threshold is not easy, as lots of analysis has to be
performed.

• Unfortunately there are no guarantees on OOD performance, and
there are known cases of bad effects. (See Ovadia et al.)

• Uncertainty should be used as additional information from where
further human analysis can be decided, instead of enabling fully
automatic processing.
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Sub-Ensembles [Valdenegro. 2019]

• A great problem with Ensembles is that computational costs
increase linearly with the number of members in the ensemble.

• A basic question is: Is it necessary that all ensemble members be
independent? Can weights be shared across ensemble members?

• Turns out the answer is no and yes, weights on layers from the input
can be shared, and last layers in the network ensembled, and this
works as an approximation of the full ensemble.
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Sub-Ensembles [Valdenegro. 2019]

Prediction

Combination

K1

T1

Input Image

K0

T0

. . .

. . .

Kn

Tn

Figure 3: Ensemble

Prediction

Combination

K1

Tf

Input Image

K0 . . . Kn

Figure 4: Sub-Ensemble
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Sub-Ensembles - Performance

Presented at the Bayesian Deep Learning Workshop @ NeurIPS 2019.
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Uncertainty in Emotion Classification
[Matin et al. 2020.]
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Uncertainty in Point Cloud Segmentation
[Bhandary et al. 2020]
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Uncertainty in Point Cloud Segmentation
[Bhandary et al. 2020]

Entropy (Right) Ground truth (Center), Predictions (Right).
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Unsupervised Difficulty Estimation
[Arriaga & Valdenegro. 2020]

Idea. Look how the loss evolves for each sample on the train/val set,
accumulating loss for each sample (as a metric).

Hypothesis. Difficult examples accumulate more loss than easy ones.
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Unsupervised Difficulty Estimation
[Arriaga & Valdenegro. 2020]

We are also looking at relationship between action score and uncertainty
(entropy), and possible predictions of model and data biases.
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Lack of Uncertainty in Computer Vision

M. Valdenegro, "I Find your Lack of Uncertainty in Computer Vision
Disturbing.", Accepted at CVPR 2021 workshops.
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Lack of Uncertainty in Computer Vision

Figure 5: Multiple incorrect detections with
low confidence. Shiba Dog is detected as
44% dog and 61% carnivorous, which is
counterintuitive for humans.

Figure 6: Multiple incorrect detections with relatively
high confidence, including detecting persons and
bowls.
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Keras-uncertainty

It is a small library I developed that implements common methods for
evaluation and estimation of uncertainty in Keras models. It can be
installed with: pip install –user

git+https://github.com/mvaldenegro/keras-uncertainty.git

There are many methods to estimate uncertainty in Neural Networks, I
have only implemented the ones that are the most widely applicable and
scale easily with the # of parameters of a network.

Uncertainty Quantification in Machine Learning - Dr. Valdenegro 115/131



Keras-Uncertainty Modules

keras_uncertainty.models
Basic uncertainty meta-models such as MCDropoutModel,
DeepEnsembleRegressor/Classifier, and
SimpleEnsemble

keras_uncertainty.layers
Layers that can be used to build UQ models, such as
DropConnectDense, DropConnectConv1D/2D/3D.

keras_uncertainty.utils
Miscellaneous utilities used in UQ, such as
classifier_calibration_error,
classifier_calibration_curve,
classifier_accuracy_confidence_curve.
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MC-Dropout API - Classification

from keras_uncer ta in ty . models import MCDropoutClass i f ier

model = Sequent ia l ( [
Dense (32 , a c t i v a t i o n =" r e l u " , input_shape = ( 1 , ) ) ,
Dropout ( 0 . 5 ) ,
Dense (5 , a c t i v a t i o n =" softmax " )

)

model . f i t ( x_ t ra in , y_ t ra in , epochs=10)

mc_model = MCDropoutClass i f ier ( model )
probs = mc_model . p r e d i c t ( some_data , num_samples=10)
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MC-Dropout API - Regression

from keras_uncer ta in ty . models import MCDropoutRegressor

model = Sequent ia l ( [
Dense (32 , a c t i v a t i o n =" r e l u " , input_shape = ( 1 , ) ) ,
Dropout ( 0 . 5 ) ,
Dense (1 , a c t i v a t i o n =" l i n e a r " )

)

model . f i t ( x_ t ra in , y_ t ra in , epochs=10)

mc_model = MCDropoutRegressor ( model )
pred_mean , pred_std = mc_model . p r e d i c t ( some_data , num_samples=10)
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MC-DropConnect API - Regression

from keras_uncer ta in ty . l aye rs import DropConnectDense ,
DropConnectConv2D

model = Sequent ia l ( [
DropConnectConv2D (32 , 3 , a c t i v a t i o n =" r e l u " ,

input_shape =(28 ,28 ,1) , prob =0 .1 ) ,
F l a t t e n ( ) ,
DropConnectDense (1 , a c t i v a t i o n =" l i n e a r " , prob =0.1)

)

model . f i t ( x_ t ra in , y_ t ra in , epochs=10)

mc_model = MCDropoutRegressor ( model )
pred_mean , pred_std = mc_model . p r e d i c t ( some_data , num_samples=10)
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MC-DropConnect - Sinusoid Regression
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MC DropConnect Regression of 2sin(0.75x) +  noise
Predictive Mean
Original Model Predictions
Ground truth 2sin(0.75x)
Three Sigma Confidence Interval
Two Sigma Confidence Interval
One Sigma Confidence Interval
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Ensembles API - Classification

from keras_uncer ta in ty . models import DeepEnsembleClassi f ier

def mlp_model ( ) :
model = Sequent ia l ( [

Dense (32 , a c t i v a t i o n =" r e l u " , input_shape = ( 1 , ) ) ,
Dense (3 , a c t i v a t i o n =" softmax " ) ,

)

return model

ens_model = DeepEnsembleClassi f ier ( mlp_model , num_estimators =5)
ens_model . f i t ( x_ t ra in , y_ t ra in , epochs=200)

probs = ens_model . p r e d i c t ( some_data )
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Ensembles API - Regression

from keras_uncer ta in ty . models import DeepEnsembleRegressor ,
deep_ensemble_regression_nl l_ loss

def mlp_model ( ) :
inp = Inpu t ( shape = ( 1 , ) )
x = Dense(10 , a c t i v a t i o n =" r e l u " ) ( inp )
mean = Dense (1 , a c t i v a t i o n =" l i n e a r " ) ( x )
var = Dense (1 , a c t i v a t i o n =" s o f t p l u s " ) ( x )

t r_mdl = Model ( inp , mean)
pr_mdl = Model ( inp , [ mean , var ] )
t r_mdl . compile (

loss=deep_ensemble_regression_nl l_ loss ( var ) ,
op t im ize r = "adam"

)

return t r_mdl , pr_mdl
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Ensembles API - Regression

ens_model = DeepEnsembleRegressor ( mlp_model , num_estimators =5)
ens_model . f i t ( x_ t ra in , y_ t ra in , epochs=200)

pred_mean , pred_std = ens_model . p r e d i c t ( some_data )

Uncertainty Quantification in Machine Learning - Dr. Valdenegro 123/131



Out of Distribution Detection - Sinusoid
Regression with Ensembles
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In this example, the training set is x ∈ [−8, 8], it can be visually seen that
outside this range the standard deviation of the output (uncertainty)
increases considerably, and increases as with the distance to that range.
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Calibration Implementation

from keras_uncer ta in ty . met r i cs import c l a s s i f i e r _ c a l i b r a t i o n _ c u r v e
import m a t p l o t l i b . pyp lo t as p l t

y_pred = model . p r e d i c t ( x_data )
y_class = numpy . argmax ( y_pred , ax is =1)
y_confs = numpy .max( y_pred , ax is =1)

conf , acc = c l a s s i f i e r _ c a l i b r a t i o n _ c u r v e ( y_preds , y_class ,
y_confs , num_bins=20)

p l t . p l o t ( conf , acc )
p l t . xax is ( " Confidence " )
p l t . yax is ( " Accuracy " )
p l t . show ( )
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Calibration - Reliability Plots with
MC-Dropout on MNIST
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Figure 7: Classical NN, Calibration error is 0.18
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Figure 8: Bayesian NN with MC-Dropout,
Calibration error is 0.11
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Out of Distribution Detection - MNIST vs
Fashion MNIST

mc_model = model_tra ined_mnist ( )
mnist_preds = mc_model . p r e d i c t ( mnist_data , num_samples=10)

fmnis t_data = fash ion_mnis t . load_data ( )

fmnis t_preds = mc_model . p r e d i c t ( fmnis t_data , num_samples=10)

fmn is t_en t ropy = entropy ( fmnis t_preds )
mnist_entropy = entropy ( mnist_preds )
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Out of Distribution Detection - MNIST vs
Fashion MNIST
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Out of Distribution Detection - ROC Curve

import numpy as np
from sk learn . met r i cs import roc_auc_score , roc_curve

mnist_preds = mc_model . p r e d i c t ( mnist_data , num_samples=10)
fmnis t_preds = mc_model . p r e d i c t ( fmnis t_data , num_samples=10)

fmn is t_en t ropy = entropy ( fmnis t_preds )
mnist_entropy = entropy ( mnist_preds )

i d _ l a b e l s = np . ze ros_ l i ke ( mnist_preds )
ood_labels = np . ones_ l ike ( fmnis t_preds )

l a b e l s = np . concatenate ( [ i d_ labe l s , ood_labels ] , ax is =0)
scores = np . concatenate ( [ mnist_entropy , fmn is t_en t ropy ] , ax is =0)

auc = roc_auc_score ( labe ls , scores )
fp r , t p r = roc_curve ( labe ls , scores )
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Out of Distribution Detection - ROC Curve
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Conclusions and Future Thoughts

• Uncertainty is a useful measure to detect misclassified and out of
distribution examples.

• Bayesian neural networks are not often used in practice, and many
applications would benefit from them. Computational performance is
a big reason.

• It is important to spread these techniques and their possible
applications, specially now that ML is used in real-world applications
that require to estimate model limits.

• Robotics in particular is a great application field, for example with
Bayesian Reinforcement Learning, Probabilistic Object Detection,
etc.

• I expect increase use of these techniques in practice.
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